top of page
  • Black Facebook Icon
  • Black Instagram Icon
  • Black YouTube Icon

4K on 1080p projectors: The difference between native and simulated resolution[^2^] [^3^]

  • terplingdedureper
  • Aug 18, 2023
  • 8 min read


If you're after a cheap and cheerful projector for watching occasional films, sport or TV programmes with the family, the Yaber V7 Pro is an excellent choice. It's very bright at a claimed 9,000 lumens and outputs a decent 1080p image that you can adjust via the menu. The image correction feature is also handy for households with children: if the projector is moved or knocked slightly, it will automatically adjust the picture.




How To Watch 4k On 1080p Projectorsl



Its image quality may not quite match that of the BenQ W2700, but the ViewSonic X10-4K is a cracking projector and has its own benefits. For starters, its RGB LED light source means you'll only have to replace it every 30,000 hours as opposed to the 4,000 hours that the BenQ's lamp lasts. That's more than 16 years of watching at five hours a day.


If you've bought yourself one of the latest games consoles, you're going to want a display that can keep up and that's exactly what the Optoma UHD38x delivers. Not only can it project your games at huge screen sizes, but it can do so at high refresh rates: up to an incredible 240Hz at 1080p and 120Hz at 4K resolution. Games look epic on this thing.


It's also an accomplished home cinema projector, with support for HDR10 and HLG and a bright image of 4,000 lumens that means it's watchable during the day, although black level response isn't the best. Focus is manual and, as it isn't a short-throw projector, you'll also need a fair amount of space to maximise your screen size. There's also nothing in the way of smart connectivity here, as you get with some of the compact projectors on this page.


The most common aspect ratio for content in home theater projectors settings (e.g. cable/satellite feeds, streaming content, etc.) is 16:9. That in mind, 1080p and 4k UHD are the two resolutions home users should consider. A few examples of projectors for home use include the X10-4K, PX727-4K, and PX747-4K.


The revolutionary technology of pixel-shifting has injected a lot of controversy and confusion into the world of 4K projectors. People are concerned about what is true or genuine 4K and what is fake or "faux-K." What is the difference, and is it anything to worry about? In the end, as we go about categorizing and defining these products, the practical question is what makes a 4K projector 4K?A Bit of HistoryBack in the day, the native resolution of a projector was a big deal, and rightly so. There was a massive visible difference in picture quality between SVGA and XGA, and between WXGA and Full HD 1080p. When comparing these projectors there were obvious differences in detail and image sharpness. Visible pixelation (the screendoor effect) on lower resolution projectors was supremely annoying and desperately to be avoided. Anyone in the projector biz could tell at a glance just from looking at pictures on the screen what the native resolution of the projector was. So we all grew up KNOWING that the "native" resolution of the chips was directly related to ultimate picture quality on the screen. That was then. This is now. In our new reality of 4K resolution and pixel shifting technologies, there is ZERO correlation between native resolution (the number of physical pixels on the chip) and the actual resolution of the picture you see on the screen. The chip's physical resolution, at least in the home theater world, has become irrelevant.The revolution began with JVC's introduction of pixel shifting in 2013. This was a radical new approach to getting substantially higher picture resolution out of native 1920 x 1080 D-ILA chips. Epson followed using pixel shifting on 1920 x 1080 3LCD chips. Then Texas Instruments released an 0.66" 4K UHD chip with a physical mirror matrix of 2716 x 1528 which uses two-phase pixel shifting to create 8.3 million pixels, which is 4K UHD. They followed that with an 0.47" DLP 4K UHD chip which has a physical mirror matrix of 1920 x 1080. It uses four-phase pixel shifting to create 8.3 million pixels.To no surprise, this has fueled a lot of controversy over what is "true 4K" and what is often disparagingly referred to as "faux-4K" or simply "faux-K." This term is widely used by industry personnel, reviewers, and consumers alike. It often connotes that there is something inauthentic and undesirable about the pixel shifting technologies and the 4K projectors that use them. In reality, pixel shifting has produced rapid advances in picture resolution at prices far lower than you must pay for projectors that have native resolution 4K chips. It is a terrific technology that is hard not to love once you see it. And the simple fact is this: we can no longer glance at an image on the screen and know the physical resolution the chips in the projector like we could before. Today there are 4K projectors using chips in various physical resolution formats -- 1920 x 1080, 2716 x 1528, 3840 x 2160, and 4096 x 2160. And they are all capable of producing impressive 4K resolution pictures. Even the current JVC and Epson models that use two-phase pixel shifting on 1080p chips can produce pictures that come a lot closer to replicating a full 4K picture than one might imagine possible--sometimes they can even beat the 4K UHD DLP chips in the subjective impression of image sharpness.To illustrate the misleading nature of the term faux-K, let's do some side by side comparisons of six different 4K projectors, five of which are using a variation of pixel-shifting, and one using native 4K chips...


In our first test, we will compare projectors using the two new 4K UHD DLP chips. We can do this by setting up the Optoma UHD60 with its 0.66" chip sporting 2716 x 1528 mirrors, and the Optoma UHD50 with its 0.47" chip, having just 1920 x 1080 mirrors. The UHD60 has two-phase pixel-shifting to double the number of pixels on the screen while the UHD50 has four-phase shifting to quadruple the number of pixels. Let's put these two projectors side by side and take a close look.Viewing the pictures close up, at a distance of 12 inches from a 5-foot wide image, you can see an obvious difference in pixel structure. The UHD60 with its 0.66" chip and two-phase shifting produces a distinct pixel structure. Each pixel is extremely small of course, but you can see clearly distinct pixels in rows and columns when you examine the image close up.On the UHD50, when you are at the same distance of 12 inches from a 5-foot wide screen, you can detect an extremely subtle hint of pixel structure, but it is nowhere near as distinct as on the UHD60. There is no sense of discrete individual pixels. This is true of the ViewSonic PX727-4K as well which uses the same 0.47" chip. The indistinct pixel structure on these projectors is a feature of the four-phase pixel shifting going on with the 0.47" chip.Once you back up to a viewing distance of two feet from a 5-foot wide screen (that is, 0.4x the screen width and a lot closer to the screen than anyone would want to be when watching a movie), all hint of visible pixel structure disappears on both projectors. At this distance the UHD60 and the UHD50 look the same, at least in terms of detail resolution. Is there is any visible difference in image sharpness? The answer is clearly no -- in practical terms you see exactly the same amount of image detail on both models. The fact that one projector's chip has a mirror matrix of 2716 x 1528 and the other a matrix of 1920 x 1080 (half the number of mirrors) has absolutely zero impact on the sharpness and detail in the image. This does not mean the pictures look identical. There are other contributing factors on a projector that affect what you perceive as image sharpness. In this case digital noise is a factor - the lower the noise the cleaner and sharper the picture looks. And in this regard the UHD50 tends to edge the UHD60 with an overall lower noise factor. In addition, one of the biggest factors influencing what you see as image detail and sharpess is contrast. In this case the UHD60 is higher in contrast than the UHD50, and in many scenes this contributes to the perception of it being the sharper of the two projectors. But at the end of the day, both the level of digital noise and the projector's contrast have more impact on one's perception of the sharpness and the ability to resolve detail on these two projectors than does the physical resolution of their chips, which is a non-issue.


This is a different comparison entirely. The ViewSonic PX727-4K has the 0.47" DLP chip with a 1920 x 1080 mirror matrix, generating a 4K picture (8.3 million pixels) via four-phase pixel shift. Meanwhile, the Epson HC 4000 uses 3LCD chips with the same 1920 x 1080 pixel matrix, but it has only a two-phase pixel shift. So it does not produce 8.3 million pixels, and Epson has never represented that it did -- they market this class of projectors as 4K-enhanced. So the HC 4000 paints two slightly offset 1920 x 1080 images per frame while the PX727-4K paints four. In theory the PX727-4K should produce a sharper picture in terms of image detail, and it does.So, what differences do we see? When viewing the Epson HC 4000 from our close-up distance of 12 inches from a 5-foot wide screen, there is no distinct pixel definition. The two-phase shift in this implementation tends to blur any hint of a discrete pixel matrix. In this regard it is extremely similar to the PX727-4K. When viewed very close up they look not quite perfectly identical as far as the indistinct pixel array is concerned, but they are pretty darned similar.Now, let's back up to a more practical viewing distance. This time we will stand 5 feet from our 5-foot wide screen (1.0x the screen width). Can we see any difference in image sharpness and detail? Yes, the PX727-4K is the sharper of the two. And this is true no matter if you are displaying a native 4K video signal, or if you are displaying regular HD 1080p and having the projectors upscale it. It is not surprising that the PX727-4K can deliver more 4K detail from a 4K signal, but it is surprising (to me anyway) that it can even upscale HD 1080p with a higher apparent level of precision. This four-phase pixel shift is remarkably potent as far as rendering detail is concerned.HOWEVER. And this is a huge however - the Epson HC 4000 is much higher in contrast with much more solid black levels than the PX727-4K. And as we know, high contrast makes a picture look sharper. So when we back up from the screen to a viewing distance of 1.5x the screen width and put on some 4K HDR material, the Epson 4000 actually appears to be a bit sharper than the PX727-4K. This is due to a combination of factors - as you move back from the screen the advantage the PX727-4K has in rendering fine detail becomes less visible so contrast becomes a more dominant factor in your overall perception of the picture's sharpness. So as your move back your perception flips and the Epson 4000 looks like the sharper of the two projectors.The point at which this occurs depends on the contrast of the subject matter, but with the 4K HDR movie Lucy it appears to happen at a viewing distance of about 1.3x the screen width (with my 20/20 vision). In point of fact, the effect is somewhat of a hybrid, with some elements in the picture looking sharper on the PX727-4K, and other elements looking sharper (or at least as sharp and more three-dimensional) on the Epson 4000. In this no-man's land, where the latent competitive strengths of both projectors are visible simultaneously in the same picture. In the end, this comparison illustrates that contrast is a huge mitigating factor that can outweigh the perception of image detail, sharpness, and clarity. Small differences in image detail which are obvious when examined close up become insignificant or even invisible when you sit back to enjoy a movie in a typical theater set up. Meanwhile, contrast is of utmost importance. 2ff7e9595c


 
 
 

Recent Posts

See All
Final kick apk download

Final Kick APK Download: Como jogar o melhor jogo de futebol online de graça Se você é fã de futebol e disputas de pênaltis, vai adorar...

 
 
 

Comments


500 Terry Francois St., San Francisco, C94158

Tel: 123-456-7890, info@mysite.com

©2023 by YOGA with BRIAN. Proudly created with Wix.com

bottom of page